AP Calculus AB
Dr. Paul L. Bailey

Worksheet 2 - Quadratic Functions
Monday, October 31, 2022

A quadratic function is a polynomial of degree two.
The standard form of a quadratic function is

$$
f(x)=a x^{2}+b x+c
$$

where a, b, and c are real numbers. The graph is a parabola which opens upward if $a>0$ and opens downward if $a<0$. The y-intercept is the point $(0, f(0))$, and we see that $f(0)=c$. The zeros of the function are the values of x such that $f(x)=0$. The quadratic formula says that $f(x)=0$ if and only if

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

The discriminant of the quadratic function is

$$
\Delta=b^{2}-4 a c
$$

this determines the number of real zeros. There are three cases:
(a) if $b^{2}-4 a c>0$, there are two real zeros;
(b) if $b^{2}-4 a c=0$, there is one real zero;
(c) if $b^{2}-4 a c<0$, there are no real zeros.

The x-intercepts (if any) are the points $(x, 0)$, where x is a real zero.
The shifted form of a quadratic function is

$$
f(x)=a(x-h)^{2}+k,
$$

where a, h, and k are real numbers. The shifted form tells how the graph of $f(x)$ is obtained from the graph of x^{2}, as follows:
(a) shift horizontally by h;
(b) stretch vertically by $|a|$;
(c) reflect across the x-axis if a is negative;
(d) shift vertically by k.

The point (h, k) where the graph turns around is called the vertex. Thus k is the minimum value of the function if $a>0$, and is the maximum value of the function is $a<0$.

We can convert from standard form to shifted form by completing the square, which leads to:

$$
h=-\frac{b}{2 a} \quad \text { and } \quad k=c-\frac{b^{2}}{4 a} .
$$

We can convert from shifted form to standard form by squaring and simplifying, which leads to:

$$
b=-2 a h \quad \text { and } \quad c=a h^{2}+k
$$

Example:	$f(x)=4 x-5+x^{2}$
Standard Form:	$f(x)=x^{2}+4 x-5$
Shifted Form:	$f(x)=(x+2)^{2}-9$

a: $1 \begin{array}{llllllll} & \text { b: } 4 & \mathbf{c}: & -5 & \mathbf{h}: & -2 & \mathbf{k}: & -9\end{array}$
Discriminant: 36

Zeros: $x=-5$ and $x=1$
y-intercept: $\quad(0,-5)$
x-intercept(s): $\quad(-5,0)$ and $(1,0)$
Vertex: $\quad(-2,-9)$

Quadratic Function: $\quad f(x)=x^{2}-6 x+8$
Standard Form:
Shifted Form:
a: b: c: h: k:
Discriminant:
Zeros:
y-intercept:
x-intercept(s):
Vertex:

Quadratic Function: $\quad f(x)=(x+2)^{2}-5$
Standard Form:
Shifted Form:
a : b : c: $\mathrm{h}: \mathrm{k}$:
Discriminant:
Zeros:
y-intercept:
x-intercept(s):
Vertex:

Quadratic Function:

$$
f(x)=x^{2}-6 x+9
$$

Standard Form:
Shifted Form:
$\mathrm{a}: \mathrm{b}: \mathrm{c}$. $\mathrm{h}: \mathrm{k}$:
Discriminant:
Zeros:
y-intercept:
x-intercept(s):
Vertex:

Quadratic Function: $\quad f(x)=9-x^{2}$
Standard Form:
Shifted Form:
a b: c: b : k :
Discriminant:
Zeros:
y-intercept:
x-intercept(s):
Vertex:

Quadratic Function: $\quad f(x)=6 x-x^{2}$
Standard Form:
Shifted Form:
a : b : c: $\mathrm{h}: \mathrm{k}$:
Discriminant:
Zeros:
y-intercept:
x-intercept(s):
Vertex:

Quadratic Function:
$f(x)=x^{2}-5 x+2$
Standard Form:
Shifted Form:
$\mathrm{a}: \mathrm{b}: \mathrm{c}$. $\mathrm{h}: \mathrm{k}$:
Discriminant:
Zeros:
y-intercept:
x-intercept(s):
Vertex:

Quadratic Function:
$f(x)=(3 x-7)(-x+1)$
Standard Form:
Shifted Form:
a : b: c: h: k:
Discriminant:
Zeros:
y-intercept:
x-intercept(s):
Vertex:

Quadratic Function: $\quad f(x)=6+x^{2}-4 x$
Standard Form:
Shifted Form:
a: b: c: h: k:
Discriminant:
Zeros:
y-intercept:
x-intercept(s):
Vertex:

